<BEA=<CAE как накрест лежащие углы при пересечении двух параллельных прямых АС и ВЕ секущей АЕ. Но <CAE=<BAE, т.к. АЕ - биссектриса угла А. Значит <BEA=<BAE, и треугольник АВЕ - равнобедренный (углы при его основании АЕ равны).
АВ=ВЕ
Пусть АВ=ВЕ=СЕ=х. Зная периметр, запишем:
Р = АВ+ВЕ+СЕ+АС
14=х+х+х+5
3х=9
х=3
<span>ВЕ=3 см</span>
<em>В равнобедренный треугольник вписан круг, центр которого удален от вершины треугольника на 102 см, а точка касания делит боковую сторону на отрезки, длины которых относятся как 8:</em><span><em>9, считая от угла при основании. </em><u><em>Найти площадь этого треугольника.</em>
</u></span>Пусть коэффициент отношения отрезков сторон будет х.
Тогда<u> отрезки боковых сторон</u> будут 8х и 9х.
По свойству отрезков касательных из одной точки к окружности<u> половина МС</u> основания треугольника равна 8х.
Выразим высоту треугольника по т. Пифагора из боковой стороны и половины основания:
ВМ²=(17х)²-(8х)²=225х²
ВМ=15х
<u>Из подобия треугольников ВМС и ВОК</u>
ВС:ВО=ВМ:ВК
17х:ВО=15х:9х
15 х ВО=153х²
ВО=10,2х
10,2х=102 см
х=10 см
Отсюда высота ВМ треугольника равна
15х=15<span>·</span>10=150 см
Основание АС=160 см
S Δ АВС=ВМ·АС:2=150·160:2=1200 см²
Уравнение окружности имеет формулу:
(х-а) в квадрате +(у-в) в квадрате= R в квадрате. Вот и подставляй данные.
а)(х-3)в квад +у в квад=4
б) х в квад+(у+2) в квад=9
в) (х+2) в квад+(у-3) в квад=5
Ответ:
1 задача:треугольник АСВ= треугольнику АВD
Объяснение:
т.к АВ общая сторона,СВ=BD,а углы СВА и АВD равны. Если коротко,то по 1 признаку
Сумма углов треугольника=180 градусам, тогда 3 угол равен 180-(97+43)=40 градусам