1. Имеет ли смысл запись:
<span>а) </span>
б)
в)
г) не имеет смысла
д)
е) не имеет смысла
2. Верно ли неравенство:
а) неверно
б)
в) неверно
Криволинейной трапецией называется плоская фигура, ограниченная осью Х, прямыми a и b, и графиком непрерывной на отрезке (a,b) функции f(x), которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисc. Тогда площадь криволинейной трапеции численно равна определенному интегралу f(x) по dx от а до b.
X²+bx+c=(x-x₁)(x-x₂)
x²+8x+15=(x+3)(x-a)
x₁=-3
x₂=a
x₁*x₂=15
-3a=15
a=15:(-3)
a=-5
X^2+8x+2больше-5
x^2+8x+7больше0 Для нахождения корней данную функцию приравняем к 0
x^2+8x+7=0
D/4=16-7=9
x1=-4+3= -1
x2= -4-3= -7
чертим числовую прямую и отмечаем на ней две точки -1 и -7 этим самым разбиваем числовую прямую на три отрезка(-бесконечность;-7);(-7;-1);(-1;бесконечность). Теперь находим знакопостоянство. Для этого берем любое значение -1 до +бесконечности и подставим в уравнение. Возьмем 0 теперь подставим 0+0+7=7 больше 0 значит положительное значение принимает, теперь берем интервал -7;-1. Возьмем -6, 36-48+7= -5 отрицательное значение и -бесконечность;-7 возьмем -8, 64-64+7=7 положительное. У нас неравенство больше 0, поэтому ищем интервалы с положительным значением, это (-бесконечность;-7)u(-1;бесконечность)
То же самое и со вторым значением x^2+8x+2меньше2
x^2+8xменьше0
x^2+8x=0
x(x+8)=0
x1=0
x2= -8
Разбиваем числовую прямую и получаем ответ (-8;0)