1) св-во биссектрисс АВ\ВС=АД\ДС
АВ\ВС=7\8
Р=45 получается АВ+ВС=30см
и составляем систему уравнений, где х-АВ, у-ВС
х\у=7\8, (30-у):у=7\8, 15у=240, у=16,
х+у=30, х=30-у, х=30-16=14.
получается АВ=14, ВС=16
3) надо делать по аналогии с 1)
Фдлину вписанной окружности
a)С=2πR=2π*a/2= π*a=√S*π
b) L = 1/4C=1/4√S*π
c)S1=S - πR²=S - π(√S/2)² = S - πS/4 =S (1- π/4)
Если нужно найти только стороны.
Пирамида правильная, следовательно, её основания <u>квадраты</u> .
Сделаем рисунок.
Проведем диагонали оснований АС и КМ в той же плоскости, в которой проведена диагональ усеченной пирамиды.
<span>Ребра правильной пирамиды равны, основания пирамиды параллельны, ⇒ КМ || АС, и<u> АКМС - равнобедренная трапеция. </u>
</span>МН - высота пирамиды и трапеции.
Диагонали оснований =диагонали квадратов, и делят их прямые углы пополам. <span>Стороны большего основания равны
АС*(sin 45°).
</span>АС=АН+НС
<span>АН=√(АМ²-МН²)=√(11-7²)=6√2
</span>НС=√(МС² -МН²<span>)=√(9²-7²)=4√2 </span><span>АС=6√2+4√2=10√2
</span><span>АВ=АД=ДС=СВ=10√2*√2:2=10 см
</span><span>КМ=АР- НС=6√2-4√2=2√2 см
</span>Стороны меньшего основания равны
<span> КМ*(sin 45°)=2√2*√2:2=2 см</span>
О1, О2, О3 - центры окружностей.
Треугольник О1О2О3 - равносторонний, его сторона равна 2r. Тогда площадь этого треугольника равна (2r)^2*V3 / 4 = r^2*V3
Площадь одного сектора равна pi*r^2 / 6
Таких секторов образовано три. Значит, площадь трех секторов равна pi*r^2 / 2
<span>Тогда площадь фигуры, расположенной вне окружностей и ограниченной их дугами, будет равна разности между площадью треугольника О1О2О3 и площадью трех секторов. А это равно r^2*V3 - pi*r^2 / 2 = 0,5*(2V3 - pi)*r^2</span>