Катет, лежащий против угла в 30 градусов, равен половине гипотенузы.
№602
а)18/33+5/11=1
б)1 7/8 + 8 6/8 - 2 7/10=7 37/40
№603
а)3 3/8 х 2=(3х2)+(3/8х2)=6+6/8=6 3/4
б)10 3/8 х 9=(9х10)+(3/8 х 9)=90+ 3 3/8=93 3/8
в)12 3/8 х 5=(12 х 5)+(3/8 + 5)=60 + 1 7/8=61 7/8
г)11 3/8 х 10=(11 х 10)+(3/8 х 10)=110 + 3 3/4=113 3/4
1)Sabc=1/2ac×bc
2)угол В=углу С,т.к.90-45=45°,=>треугольник АВС-равнобедренный, значит Sabc=1/2ac²,
3)8=1/2ac²,
ac²=16
ac=4
по т.Пифагора
АВ²=АС²+ВС²,АВ²=2АС²
AB²=16×2=32
AB=√32
А). Цитата: "Существование и единственность вневписанной
окружности обусловлены тем, что биссектрисы двух внешних углов
треугольника и биссектриса внутреннего угла, не смежного с этими
двумя, пересекаются в одной точке, которая и является центром
такой окружности".
В треугольнике АВС <ABC+<BCA=180°-<A.
<ABC=180°-<CBP, <BCA=180°-BCK - как пары соответственно смежных
углов.
Окружность (Q;R) - вневписанная окружность треугольника АВС по
определению (из условия). Следовательно, BQ и СQ - биссектрисы углов <CBP и <BCK соответственно.
Тогда <BQC=180°-(1/2)*(CBP+BCK)=180°-(1/2)*(360°-<ABC-<BCA). Или
<BQC=(1/2)*(<ABC+<BCA).
Но <BQC - вписанный угол, опирающийся на дугу ВС, а
<BOC- центральный угол, опирающийся на ту же дугу.
<BOC=2*<BQC = <ABC+<BCA = 180°-<A.
Тогда в четырехугольнике АВОС сумма противоположных углов
<А+<BOC=<A+180°-<A = 180°. Значит около этого четырехугольника
можно описать окружность и при том только одну.
Следовательно, окружности, описанные около треугольника АВС и
четырехугольника АВОС - одна и та же окружность и точка О лежит
на этой окружности, что и требовалось доказать.
б). Пусть R/r=4/3. r=(3/4)*R.
<А+<BOC= 180° (доказано выше).
CosA = -Cos(180-A) = -Cos(BOC).
ВС - общая хорда пересекающихся окружностей.
По теореме косинусов из треугольника ОВС:
BC²=2R² - 2R²Cos(BOC)=2R²+ 2R²CosA=2R²(1+CosA) . (1)
Bз треугольника AВС:
<BJC - центральный угол, опирающийся на ту же дугу, что и <BAC.
<BJC=2<A.
BC²=2r² - 2r²Cos(BJC)=2r²(1-Cos2A) . (2)
Приравняем (1) и (2):
2R²(1+CosA)=2r²(1-Cos2A) или
2R²(1+CosA)=2(9/16)R²(1-Cos2A) или
(1+CosA)=(9/16)(1-Cos2A).
По формуле приведения Cos2A= 2Cos²A-1, тогда
1+CosA=(9/16)(1-2Cos²A+1) => 1+CosA=(9/8)(1-Cos²A).
Пусть CosA= Х, тогда:
8+8Х=9-9Х² или
9Х²+8Х-1=0
Х1=(-4+√(16+9))/9 = 1/9.
Х2=-1 - не удовлетворяет условию, так как <A > 0.
Ответ: CosA=1/9.
Определение равнобедренного треугольника: Равнобедренный треугольник - это треугольник у которого все три стороны равны.
Элементы равнобедренного треугольника: это две боковые стороны и основание.
Теорема: В равнобедренном треугольнике углы при основании равны. (покажу доказательство на примере задачи с картинкой. Картинка будет наверху ответа)
Доказательство: Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD — биссектриса треугольника ABC. Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD — общая сторона, ∠ 1 = ∠ 2, так как AD — биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.
Надеюсь что тебе помог мой ответ!