1. Чертим основание АВ, равное а.
2. Стандартным способом находим середину М отрезка АВ.
3. Радиусом, равным АМ, как на диаметре чертим окружность с центром в точке М на отрезке АВ.
3. Из А, как из центра, чертим полуокружность радиусом, равным данной высоте h, чтобы она пересекла окружность (М) в точке 1.
4. Из С. как из центра, радиусом, равным h, находим вторую точку пересечения боковой стороны с окружностью (М) в точке 2.
5.Через точки 2 и 1 проводим из А и С прямые до их пересечения в точке В, третьей вершине треугольника АВС.
Углы при точках 1 и 2 - вписанные, опираются на диаметр и равны 90º
Равнобедренный треугольник АВС с основанием АВ=а и высотой, равной h, построен.
Биссектриса - поделила угол на два, Высота- проведена перпендикулярно стороне АС , Медиана- делит пополам ту сторону к которой проведена
Дан Треугольник АВС, ВК -медиана и высота.
АВС равнобедренный, т к треугольники АВК=СВК по двум сторонам и углу между ними,следовательно АВ=ВС,треугольник АВС равнобедренный.
2)ВК - высота и биссектриса,треугольники АВК=СВК по стороне и двум прилежащим к ней углам, следовательно АВ=ВС,треугольник АВС равнобедренный, что и требовалось доказать.
Так как ∠1 = ∠2 и BD⊥AC, BD - биссектриса и высота в треугольнике АВС, значит ΔАВС равнобедренный, ⇒
∠ВАС = ВСА.
∠ВАС = ∠САЕ по условию, значит
∠ВСА = ∠САЕ, а эти углы - внутренние накрест лежащие при пересечении прямых ВС и АЕ секущей АС, ⇒ВС║АЕ.