Решим эту задачу, применив теорему косинусов: a2= b2+ c2−2bc ·cos(A);
Где а=DN;b=CD; и c=CN; cosA=cos60*
CD дано по условию и равно 8;
CN также дано по условию и равно 6;
cosA тоже известен равно 1/2;
Остается найти DN; Имеем четырехугольник NDEM у которого стороны DE||NM По условию; а стороны DN||стороне ЕМ так как они равно удалены от точек С и К ромбаCDEK;
Подставляя значения чисел получим:
64+36- 2*8*6/2=100-48=52;
То есть DN^2=52;
DN=\/52=2\/13;
Вычислим периметр фигуры: Р=
(2\/13+8)х2=4\/13+16;
Возможно,зонт швабру, палатку.
Рассмотрим получившиеся треугольники AOD и АО1В. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого:
<AOD=<AO1B=20° по условию;
< A - общий
Значит, <ADO=<ABO1 (это углы B и D в четырехугольнике)
Пусть общий для обоих треугольников AOD и АО1В угол А будет х. Выразим неизвестные углы ADO и ABO1, зная, что сумма углов треугольника равна 180°:
<ADO=<ABO1=180-(<A+20)=160-<A=160-x (<D=<B=160-x)
Рассмотрим четырехугольник ABCD. Зная сумму его углов, выразим угол С:<C=360-(<A+<B+<D)=360-(x+160-x+160-x)=40+х.
Т.е.<span><C=40+<A (поскольку за х мы принимали угол А). Таким образом, мы видим, что разница между углами С и А равна 40 градусов.</span>