Если угол B=90 то 0
----------------------------
Цитата: "Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости и не имеют общих точек или другими словами это две прямые в пространстве, не имеющие общих точек, и не являющиеся параллельными".
Прямая ВС лежит в плоскости квадрата АВСD, а прямая МА лежит вне этой плоскости, поскольку точка М лежит вне плоскости АВСD (дано), а через две точки можно провести только одну прямую. Прямая ВС не имеет общих точек с прямой МА, так как она параллельна прямой АD и не имеет с ней общих точек, а точка А - общая точка прямых МА и АD. Следовательно, прямые ВС и МА - скрещивающиеся, что и требовалось доказать.
Чтобы найти угол между скрещивающимися прямыми, надо провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. Мы получим пересекающиеся прямые, угол между которыми равен углу между исходными скрещивающимися.
В квадрате ABCD AD параллельна ВС, и пересекает прямую МА в точке А. Следовательно, угол МАD и есть угол между скрещивающимися прямыми МА и ВС и равен 45°
Ответ: угол между прямыми МА и ВС равен 45°.
<span>треугольник ВСД прямоугольный с углами м/у катетами и гипотенузой 45 градусов. Следовательно катеты ВД=СД=2 дм. Треугольник АВД прямоугольный с катетами ВД=2 и АД=АС+СД=8+2=8 дм. Площадь треугольника АВД равна 1/2*АД*Вд=1/2*8*2=8 кв.дм.</span>
4) В параллелограмме ABCD точка K лежит на стороне AD. Отрезок CK пересекае диагональ BD в точке N. а) Докажите, что треугольник BNS и DNK подобны. б) Найдите длину диагонали BD, если известно, что BC=10 cм, АK=4 см, BN=7 cм
Угол между радиусом и касательно (т.е. угол ABO) равен 90 градусам (свойство).
Т.к. треугольник прямоугольный, то сумма его острых углов равна 90 градусам. Отсюда не составит труда найти сами углы:
(градусов)
(градусов)