Пусть дана окружность радиуса R с центром в точке О и внутри её точка <span>N.
Вычертим отдельно условный равнобедренный треугольник ОАВ и на стороне АВ точка </span>N. ОА и ОВ - это радиусы.
Проведём отрезок ОN, равный расстоянию d от центра до точки <span>N.
Из центра опустим перпендикуляр Оh на сторону АВ.
По условию задания А</span>N:В<span>N = 3:4. Примем коэффициент пропорциональности за х.
Тогда А</span>N = 3х, а В<span>N = 4х. Перпендикуляр Оh делит АВ пополам.
Составляем уравнения из треугольников ONA и Оh</span><span>N.
</span>Оh² = R²-(3.5x)² = R²-12,25x².
Oh² = d²-(0,5x)² = d²-0,25x², отсюда вытекает R²-12,25x²<span> = d²-0,25x².
Приведём подобные: 12x</span>² = R²-d².
Находим коэффициент х =√((R²-d²)/12) = √(R²-d²)/2√3.
Можно определить длину отрезка АN = 3x = 3√(R²-d²)/2√3 = <span>√(3(R²-d²))/2.
Теперь в треугольнике OAN известны 3 стороны, поэтому находим по теореме косинусов косинус угла AON, а по нему и сам угол.
Ответ: от отрезка ON откладываем найденный угол </span><span>AON, проводим радиус ОА и через точки A и N проводим искомую хорду АВ.</span>
Угол с=90
угол в=60
отсюда угол а=30
против угла в 30 градусов лежит катет равный половине гипотенузы
вс=1/2*10=5
Решение в приложении. Достаточно формул. Рисунок делать не стал!
Пусть дан прямоугольник АВСД. У прямоугольника диагонали равны. соеденим середины сторон прямоугольника и получим четырехугольник МКРТ (точки М,К,Р,Т- соотвенно середины сторон АВ,ВС,СД,АД) все стороно получившегося четырехугольника являются средними линиями трегольников и равны 18/2=9см, т.е четырехугольник МКРТ-ромб,Р=4*9=36