∠ACB - вписанный и опирается на дугу AB. Т.к. AB - диаметр окружности, то ∪AB=180° и ∠ACB=180/2=90° ⇒ ∠ACT=90° как смежный угол.∪BC=∪AB-∪AC=180-80=100°. ∠BAC вписанный и опирается на дугу BC ⇒ ∠BAC=100/2=50°
По свойству касательной к окружности ∠BAT=90° ⇒ ∠CAT=90-50=40°∠ATC=180-(40+90)=50°
<span>Если из одной точки проведены к окружности касательная и секущая, то произведение всей секущей на её внешнюю часть равно квадрату касательной.
В нашем случае АВ</span>² = AF*AE или 81 = 15*АЕ, откуда АЕ = 81/15.
<span>EF = AF - AE = 15 - 81/15 = 144/15 = 9,6см </span>
/_\= 30° так как DE U EDC(Смежные углы)
Ответ последний : 60 градусов