проведемо діагональ. Отримали 2 прямокутних трикутника (кути квадрата 90*), де діагональ вадрата є й гіпотенузою прямокутних трикутників. Вони рівні (за 3 сторонами).
Внешний угол прямоугольного треугольника при вершине А равен 140°.
Значит, смежный с ним угол САВ=180°-140°=40°.
АD - биссектриса и делит угол САВ пополам.
Угол САD=20°
Сумма острых углов прямоугольного треугольника 90°
∆ СDA- прямоугольный, ⇒
∠СDA=90°-∠CВD=70°
Для Δ BAD угол СВD - внешний и равен сумме двух внутренних, не смежных с ним. ⇒
∠DBA=70°-∠DAB=70°-20°=50°
∠ADB=180°-CDA=110°
∠DAB=20°
4.6/2.3=2- коэффициент пропорциональности, следовательно остальные стороны в 2 раза меньше. соответственно = 5/2=2,5см. и 2,5/2= 1,25см
2. Расстояние между а и АС это перпендикуляр, опущенный из точки В на прямую АС.Узнав площадь треугольника АВС, сможем найти расстояние от а до АС.
S=AC*CB=15*20=300
S=AB*h⇒
AB*h=300⇒ h=300/AB
AB=√(AC²+CB²)=√(225+400)=25
h=300/25=12- расстояние от а до АС
3. ВС=√(DC²- DB²)=√(225-144)=9
AD=DC- по условию, как их проекции АВ=ВС , значит АВС-равнобедренный, высота, опущенная из В к АС будет являться также и медианой, тогда
h=√(BC²-(1/2AC)²)=√(81-25)=√56=2√14 -расстояние от а до АС
Теорема синусов, и только так