Если я правильно понял, здесь дуга размером 120° и вписанный угол 40°.
Центральный угол, то есть градусная мера дуги, в 2 раза больше, чем вписанный угол, то есть равен 80°.
Третья дуга имеет градусную меру 360° - 120° - 80° = 160°
Т. к. пирамида правильная, то у неё в основании лежит квадрат и все боковые грани равны.
По условию точка О - середина основания пирамиды, следовательно и она середина пересечения диагоналей квадрата и делит каждую диагональ пополам.
Из вершины S проведём перпендикуляр (высоту) в точку О.
Рассм. ΔSOD - прямоугольный (т. к. SO - высота)
OD = 1\2 * ВD (т. к. точка О - середина основания пирамиды)
OD = 1\2 * 10 = 5 см
По теореме Пифагора:
SO² = SD² - OD²
SO² = 13² - 5²
SO² = 169 - 24 = 144
<u>SO = 12 см</u>
Треугольник (очевидно) тупоугольный, что можно проверить по теореме косинусов... меньший угол лежит против меньшей стороны))
высота будет вне треугольника... т.е. получившаяся фигура вращения представляет собой конус с образующей =17 и внутри конусообразная же выемка с образующей =10
объем будет равен разности объемов этих конусов...
площадь боковой поверхности будет равна сумме площадей боковых поверхностей...
интересно, что цифры получились одинаковые
(единицы измерения разные)))