по тереме косинусов
МРво 2-й степени= 7*7+8*8-2*7*8*2/7
МР во 2-й=64+49-35
МРво 2-й=81
МР=9
Во всех задачах проведена касательная, которая перпендикулярна радиусу. Поэтому:
5) Треугольник OBN прямоугольный, дальше - теорема Пифагора: BN = Корень из (ОN*ON-OB*OB)=Корень из (2*2-1,5*1,5)=1,32 (Приблизительно)
6) В прямоугольном треугольнике OAK катет АО = 4, а гипотенуза ОК=8, значит , угол АКО = 30 град.( катет, противолежащий углу в 30 град, равен половине гипотенузы). Точка О равноудалена от обеих касательных (т.к. отрезки АО и ОВ являются радиусами, перпендикулярными сторонам угла К), значит, отрезок ОК является гипотенузой угла АКВ, соответственно, угол АКВ=2*угол АКО = 2*30=60 град.
7) Треугольник ОСВ прямоугольный, значит угол О=180-90-45 = 45. т.е. треугольник является равнобедренным, и ОВ=ВС=5.
<span>8) Треугольник АОС - равнобедренный, т.к. АО=ОС - это радиусы. Значит, угол ОАС=углу ОСА = (180-100)/2=40 град. Угол ОАК = 90 град, значит КАС=90-ОАС = 90-40 = 50 град.</span>
По свойству секущих АВ*АС=АД*АК, пусть АВ=ДК=х, тогда АД=25-ДК=25-х, х*20=(25-х)*25, 20х=625-25х, 45х=625, х=625:45=125/9=13целых8/9