Площадь прямоугольника равна 60 см^2
Допустим AB =5 , BC =6 , BM =5 ,( AM =MC , M∈[AC] .
------------------
AC - ?
Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма.
Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 ||
AC² =2(5² +6²) -(2*5)²=22.
AC =√22.
ответ: √22.
-----------------------------
Или
Из ΔAMB по теореме косинусов
AB² =AM² +BM² -2AM*BM*cos∠AMB (1)
Аналогично из ΔCMB ,CB² =CM²+BM² -2CM*BM*cos(180° -∠AMB) или
CB² =CM²+BM² +2CM*BM*cos∠AMB (2)
Складывая уравнения (1) и (2) получаем :
AB² +CB²= AM²+CM² +2BM² ;
AB² +CB²= (AC/2)²+(AC/2)² +2BM² ;
AB² +CB²= AC²/2 +2BM² ;
2(AB² +CB²)= AC² +(2BM)² ; * * *AC² + BD² =2(AB² +CB²) || BD=2BM.* *
AC² = 2(AB² +CB²) -(2BM)²
Так как треугольник абс равнобедренный,то тангенс угла асб = тангенсу угла бас. тангенс угла бас=тангенсу угла нас.Рассмотрим треугольник нас,угол анс=90 град.,по теореме Пифагора нс=24.
Тангенс угла нас= отношение противолежащего катета к прилежащему=нс/ан=24\10=2.4
Сторона большего квадрата= а , сторона меншего = (а - 3)
а в квадрате - (а - 3) в квадрате = 21
а в квадрате - а в квадрате + 6а - 9 =21
а = 5
сторона меншого = 5-3=2
Периметр большого = 5 х 4 =20
Периметр меншого = 2 х 4 = 8
Я решил получилось 768 если нужно решение сделай ответ лучшим