1)
Разложим на множители числитель х²-2х-15, для этого решим уравнение
х²-2х-15 = 0
D = b² - 4ac
D = 4 - 4·1·(-15) = 64
√D = √64 = 8
x₁ = (2+8)/2 = 10/2 = 5
x₂ = (2-8)/2 = -6/2 = -3
Теперь числитель представим в виде произведения:
х₂ - 2х - 15 = (х-5)(х+3)
2)
Аналогично поступим со знаменателем х² + 6х + 9, в котором содержится квадрат суммы:
х² + 2·х·3 + 3³ = (х+3)² = (х+3)(х+3)
3) А теперь сократим дробь.
12ab(13a² - b²) + 13ab(b² - 12a²) = 156a³b- 12ab³ + 13ab³ - 156a³b = ab³
при a = 10 , b = - 2
ab³ = 10 * (- 2)³ = 10 * (- 8) = - 80
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\