Для разложения на множители суммы кубов используется тождество:
a3 + b3 = (a + b)(a2 - ab + b2),
которое называют формулой суммы кубов
Чтобы её доказать, умножим двучлен a + b на трехчлен a2 - ab + b2:
(a + b)(a2 - ab + b2) = a3 - a2b + ab2 + a2b - ab2 + b3 = a3 + b3.
Множитель a2 - ab + b2 в правой части равенства напоминает трёхчлен a2 - 2ab + b2, который равен квадрату разности a и b. Однако, вместо удвоенного произведения a и b в нем стоит просто произведение. Трехчлен a2 - ab + b2 называют неполным квадратом разности a и b.
Итак: сумма кубов двух выражений равна произведению суммы этих выражений и неполного квадрата их разности.
Для разложения на множители разности кубов используется тождество:
a3 - b3 = (a - b)(a2 + ab + b2),
которое называют формулой разности кубов
Чтобы её доказать, умножим двучлен a - b на трехчлен a2 + ab + b2:
(a - b)(a2 + ab + b2) = a3 + a2b + ab2 - a2b - ab2 - b3 = a3 - b3.
Множитель a2 + ab + b2 в правой части равенства напоминает трёхчлен a2 + 2ab + b2, который равен квадрату суммы a и b. Однако, вместо удвоенного произведения a и b в нем стоит просто произведение. Трехчлен a2 + ab + b2 называют неполным квадратом суммы a и b.
<span>Итак: разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы.</span>
A) 11*n <span>где n - любое целое число
б) 21*n, где n - любое целое число.
</span><span>Можно-ли считать решением данной задачи следующие варианты: а) 10n+n, где n - любое целое число; б) 20n+n, где n - любое целое число?
Да , можно так как </span>а) 10n+n,=n*(10+1)=11n
б) 20n+n,=n*(20+1)=21n<span>
</span>
12(x-7)=7(x-2)
12x-84=7x-14
12x-84-7x+14=0
5x-70=0
5x=70
x=14
<span>получается 91*92*93*94*95*96*97*98*99=6.2816*10^17</span>