угол А+угол В=180° как смежные
Пусть А=х°,а угол В=4х°
Х+4х=180
5х=180
х=180:5
х=36
А=36°, В=36*4=144°
1)Рассмотрим треугольник КМР - она равносторонняя -> все углы 60°
2)М - середина ТS -> TM=MS=KP, но KP=MP=KM, тогдв все эти стороны равны.
3)Рассмотрим треугольники КМТ и РМS:
1.KM=MP
2.TM=SM
3.KT=PS (по условию - равнобедренная трапеция)
Из этого следует, что данные треугольники равны по трём сторонам, да ещё эти треугольники равнобедренные (см. пункт 2)
Из этого равенства выясняем, что углы КМТ и РМS равны.
Тогда на развёрнутой линии ТS 3 угла -> один из них 60°, осталбные два равны между собой, тогда:
(180°-60°)/2=60° угол КМТ или РМS
Тогда углы при основании треугольников равны 60°.
Значит:
Угол К = 60°+60°=120°
Угол Р = угол К(равнобедренная трапеция)
Угол Т = угол S = 60°
Вроде так.-.
Ответ:Проведи вершину и реши по теореме Пифагора, всё просто)
Объяснение:
2) площадь поверхности Q состоит из площади основания-квадрата S и 4 боковых граней F
Q=4F+S
S=Q-4F
сторона квадрата -основания равна √S, а значит √(Q-4F)
3)BDC-равнобедренный треугольник, М-пересечение медиан,
DH^2=BD^2-BH^2=25^2-(24/2)^2=625-144=481; DH≈22
DH=
AH-высота в равностороннем треугольнике
AH^2=AB*cos30=24*√3/2=12√3≈20.8
Значит большая сторона треугольника-сечения ADH
АD=25