2(cos3x-cosx)+sin2x=0
-4sinxsin2x+sin2x=0
sin2x(-4sinx+1)=0
sin2x=0πn⇒x=πn/2,n∈z
3π/2≤πn/2≤3π
3≤n≤6
n=3⇒x=3π/2
n=4⇒x=2π
n=5⇒x=5π/2
n=6⇒x=3π
-4sinx+1=0
sinx=1/4⇒x=arcsin1/4+2πk,k∈z
x=arcsin1/4
x=π-arcsin1/4
x=2π+arcsin1/4
x=3π-arcsin1/4
4x²+4x-11-2/(x²+x-1)≤0
4x²+4x-4-7-2/(x²+x-1)≤0
4*(x²+x-1)-7-2/(x²+x-1)≤0
x²+x-1=t, t≠0
4t-7-2/t≤0
(4t²-7t-2)/t≤0
метод интервалов:
1. 4t²-7t-2=0
D=81, t₁=-1/4, t₂=2
t=0
2.
- + - +
----------|--------|----------|--------->t
-1/4 0 2
t∈(-∞;-1/4]U(0;2]
1. t₁≤-1/4,
x²+x-1≤-1/4, x²+x-3/4≤0 метод интервалов:
x²+x-3/4=0, x₁=-1,5. x₂=0,5
+ - +
-----------|----------------|--------->x
-1,5 0,5
x∈[-1,5;0,5]
2. 0<t₂≤2
t>0, x²+x-1>0
D=5
x₁=(-1-√5)/2. x₂=(-1+√5)/2
+ - +
------------|---------------|----------------->x
-(1+√5)/2 (-1+√5)/2
x∈(-∞;-(1+√5)/2)U((-1+√5)/2;∞)
t≤2, x²+x-1≤2, x²+x-3≤0 метод интервалов:
x²+x-3=0
x₁=(-1-√13)/2
x₂=(-1+√13)/2
+ - +
----------------|----------------|-------------->x
-(1+√13)/2 (-1+√13)/2
x∈[-(1+√13)/2;(-1+√13)/2]
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ | | | | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
--------[-------------)------------[----------]------------(---------------]------------------>x
(-1-√13)/2 (-1-√5)/2 -1,5 0,5 (-1+√5)/2 (-1+√13)/2
x∈[(-1-√13)/2;(-1-√5)/2)U[-1,5;0,5]U((-1+√5)/2;(-1+√13)/2]
(-1+√13)/2≈1,3
<u>ответ: наибольшее целое решение неравенства х=1</u>
17c
-7.5xy
-36c
15ax
26.6c
-2.4by
60a
0.25pq
12b
-7x
-13a
4.6y
-4.4x
некорректная задача
-2.8x
7\12a
-2\7b
8х²–48ху++3у²–32х²+48ху–32х²=–56х²+3у²=–56*3.24+21=–160.44