Рассмотрим треугольник CAD - прямоугольный (AD по условию высота). Найдем угол С: угол C=90-21=69 градусов. AB=BC по условию --- треугольник ABC равнобедренный, значит, угол A = углу C = 69 градусов. Найдем оставшийся угол B: угол B=180-69-69=42 градусов.
Достроим прямую АВ и назовем ее ВЕ , так как BC паралельны АД, и угол
А=53 град., то угол ЕВС равен 53 град. следовательно угол АВС =
180-53=127 град ОТВЕТ угол В=127 градусов
Задача элементарная, но мне захотелось написать "совершенно" формальное решение.
Пусть центр квадрата P, середина (это так надо перевести слово "серебро" в контексте задачи :)) BC - M.
Ясно, что центр окружности лежит на прямой, параллельной BC и AD и проходящей через середину MP - точку K. Пусть эта прямая пересекает AB в точке N. Поскольку окружность симметрична относительно KN, то PK и AN - это половины хорд, перпендикулярных линии KN, проходящей через центр.
Ясно, что AN = 3a/4; PK = a/4; NK = a/2; где a - сторона квадрата.
Расстояние до хорды связано с радиусом и половиной длины хорды теоремой Пифагора. Разность расстояний от центра до ПОЛУхорд AN и PK равна NK; Если обозначить радиус окружности R, то
√(R^2 - (a/4)^2) - √(R^2 - (3a/4)^2) = a/2; пусть 4R/a = x; тогда
√(x^2 - 1) = √(x^2 - 9) + 2;
x^2 - 1 = x^2 - 9 + 4√(x^2 - 9) + 4;
x^2 - 9 = 1; x = √10;
ну, и 4/a = 2;
R = √10/2;
Разумеется, это простое упражнение на координатный метод.
По сути надо найти окружность, проходящую через точки (0,1) (0,-1) и (-2,-3) для квадрата со стороной 4;
Центр в точке (b,0)
b^2 + 1 = R^2;
(b + 2)^2 + 3^2 = R^2;
b = -3; R = √10; это результат для квадрата со стороной a =4;
то есть при a = 2; R = √10/2;
Ответ:
27
Объяснение:
Периметр =сумма всех сторон треугольника
P = AB+BC+CA
=> AB=P-BC-CA
AB=77-30-20