Решим задачу так:
1. Построим прямую а и точку А на ней.
2. Из точки А построим угол, равный известному нам, и под этим углом прямую b
3. Построим прямую д, паралелльную b, на расстоянии, равном высоте h из условий задачи. Обозначим точку В пересечения прямых b и д.
4. Из точки В построим известный нам угол "в другую сторону" (т.е. не параллельно прямой b) и прямую с под этим углом. Обозначим точку С пересечения прямых
б и с.
Ура, треугольник АВС построен.
Для доказательства построим из точки В отрезок ВЕ перпендикулярный отрезку АС. Поскольку точка В лежит на прямой д, параллельной отрезку АС и находится на расстоянии h, значит ВЕ является высотой, построенной к боковой стороне и равно h
Построили и увидим, что мы имеем:
ПЕРПЕНДИКУЛЯР Н, опущенный с ВЕРШИНЫ ПРЯМОГО УГЛА С НА ГИПОТЕНУЗУ АВ;
А значит надо вначале найти сторону катет АС:
Если косинус А =2/3, то составим пропорцию:
12/АС=2/3;
Откуда АС=12*3/2=18;
По теореме Пифагора находим
Н^2=АС^2-АН^2=18^2-12^2=180 ;
Значит по соотношению в прямоугольном треугольнике высота-перпендикуляр опущенный с вершины прямого угла на гипотенузу равен
Н^2=АН*НВ=180;
12хНВ=180;
Значит НВ=180/12=15;
АВ=АН+НВ=12+15=27;
Ответ АВ=27
36 кажется?
окружность-360
2+3+4=10 (частей)
360/10=36 (градусов на одну часть)
36/2=18 (1часть)
18*2=36 (наименьший угол)
но я точно честно не уверена