Решение : ///////////////////////////////////
sin34/sin34+tg98/tg98=1+(-1)=0
Ответ:
0.2
Объяснение
Сначала найдем АЕ
АЕ = АС\2 = √2.4 \ 2
ВЕ находим по теореме Пифагора
ВЕ = √ АВ² - АЕ² =√ ( 0.8)² - (√2.4 \ 2)² =√ 0,64 - 0.6 = √0.04 = 0.2
1. Треугольник ROS = Треугольнику TOP
2. За вертикальным углом и 2 равными сторонами
Обозначим пирамиду АВСК. АВС основание. Угол В прямой. К вершина пирамиды. По условию угол ВАС=Бетта, сторона ВС=В. А углы АВК и КВС равны Гамма поскольку являются линейными углами двугранных углов наклона граней пирамиды, а АВ и СВ перпендикуляры к их рёбрам.Из вершины пирамиды К опустим перпендикуляр на основание в точку О. Из точки О проведём перпендикуляр ОД на АВ. Он будет равен радиусу вписанной окружности R, поскольку все грани имеют одинаковый наклон к основанию. Тогда АВ=В*ctg Бетта, АС=В/sin Бетта=В*cosec Бетта. Радиус вписанной окружности для прямоугольного треугольника находим по формуле R=(а+в+с)/2=(В+В*ctgБетта-В*cosec Бетта)/2. Далее ОК=Н=ОД*tg Гамма=R*tgГамма( из треугольника КОД). Площадь основания S осн.=1/2АВ*ВС=1/2*В*ctg Бетта*В. Тогда объём пирамиды равен V=1/3*(В квадрат*ctgБетта/2)*В(1+ctg Бетта-cosec Бетта)/2*tg Гамма=1/12*Вкуб*ctg Бетта(1+ctg Бетта-cosec Бетта)*tg Гамма.