Из т. A опустим перпендикуляр на прямую DE (см. прикрепленный рисунок). Пусть AH - этот перпендикуляр, (длину которого и требуется найти в задаче). Тогда AH⊥DE. Проведем отрезок CH в плоскости CDE.
Т.к. по условию AC⊥CDE, то AH - наклонная, а AC - перпендикуляр (к плоскости CDE). И AH⊥DE (по построению), тогда по теореме обратной теореме "о трёх перпендикулярах", получаем, что DE⊥CH.
Таким образом CH - это высота прямоугольного равнобедренного треугольника CDE. Найдем CH. Для этого найдем DE по т. Пифагора:
DE² = CE² + CD² = (12√2)² + (12√2)² = 2*12² + 2*12² = 4*12²,
DE = √(4*12²) = 2*12.
Т.к. треугольник CDE - равнобедренный, то его высота CH является и медианой. Поэтому DH = EH = DE/2 = 2*12/2 = 12.
По т. Пифагора для ΔCDH.
CH² = CD² - DH² = (12√2)² - 12² = 2*12² - 12² = 12²,
CH = √(12²) = 12.
Т.к. AC⊥пл.CDE, то AC⊥CH, и ΔACH прямоугольный, ∠ACH = 90°.
По т. Пифагора для ΔACH:
AH² = CH² + AC² = 12² + 35² = 144 + 1225 = 1369,
AH = √(1369) = 37.
Ответ. 37 дм.
Квадрат можно разрезать на два равных или два неравных и не подобных прямоугольника. Если нужны неравные, но подобные, то этого сделать нельзя. Т.к. одна из сторон (длина) будет одинакова, а ширина разная. А в подобных прямоугольниках длина и ширина одного прямоугольника должна равно относиться к длине и ширине другого.
Вывод: нельзя сделать 2 неравных подобных прямоугольника из квадрата
Но это при условии, что нужно использовать весь квадрат. Если можно оставить какую-то его часть, то можно сделать неравных подобных прямоугольника.
проводим высоту bh. ah = (ad-bc)/2 (по идее так). находим высоту bh^2=ab^2-ah^2 и bh =20 площадь abcd=(bc+ad)*bh/2=420. вроде так
треугольник АВС равносторонний, АВ=ВС=АС=6, О-центр треугльника=центр вписанной, описанной окружности, ОА=ОС=ОВ=радиус описанной окружности, треугольники МАО=треугольникМВО=треугольникМСО как прямоугольные по двум катетам (ОА=ОВ=ОС, ОМ-общий), МА=МВ=МС, треугольник АВС, ОА=АВ*√3/3=6√3/3=2√3, треугольник МАО, МА²=ОА²+ОМ²=12+4=16, МА=4
AB=BC из этого следует что BH является высотой,биссектрисой и медианой(по теореме равнобедр треуг)
Значит AH=HC
AC=AH+HC
AC=2AH
AH=AC/2
AH=4/2=2
AH=HC=2 следует что С(2;0)
ЗначитА(-2;0)
3 вариант ответа