108°:2=54° - каждый угол
Смежный с ним 180°-54°=126°
Ответ.∠BOD=126°
<span>Прямые СС</span>₁<span> и ВD</span>₁<span> - скрещивающиеся.
Расстоянием между ними будет расстояние между СС</span>₁<span> и плоскостью, проходящей через прямую ВD1 параллельно прямой СС</span>₁<span>.
<em>Расстояние между прямой и плоскостью - это длина перпендикуляра от этой прямой до плоскости.
</em>АС и ВD - диагонали основания куба, О - точка их пересечения.
ВDD</span>₁<span>В</span>₁<span> - плоскость, в которой расположена прямая ВD</span>₁<span>. Так как любая точка прямой, параллельной плоскости, находится на одинаковом расстоянии от нее, найдем СО, которое равно МО</span>₁<span>.
Основание куба - квадрат, его диагонали пересекаются под прямым углом и точкой пересечения делятся пополам.
Треугольник СОВ - прямоугольный равнобедренный.
СО=ОВ.
СО=СВ*sin 45</span>°<span> (можно по т.Пифагора вычислить длину СО)
<span>СО=2√2*(<span>√2):2=2 (ед.длины)</span></span></span>
Пусть АС - биссектриса и диагональ в параллелограмме ABCD, значит BAC = CAD. BCA=CAD как накрест лежащие углы параллельных BC и AD и секущей AC, => BAC = BCA, значит треугольник ABC - равнобедренный с основанием АС =>АВ = ВС по свойству параллелограмма, AB=CD=BC=AD как противоположные стороны => он ромб
рассмотрим ромб, диагональ вд делит угол пополам. тобишь на 60 и 60
Отрезок пересекает плоскость под углом. Продолжим перпендикуляр к плоскости из одной его точки до точки, соединив которую с другим концом отрезка, получим отрезок, перпендикулярный проекции, длину которой нам надо выяснить. Заодно этот отрезок будет стороной большого прямоугольного треугольника, гипотенуза которого равна 15, одна сторона, перпендикулярная плоскости равна сумме 3 и 6 см (катет), и еще одна сторона - та, которую мы ищем.
(3+6) в квадрате+(проекция отрезка на плоскость) в квадрате=15 в квадрате.
81+х в квадрате=225
х в квадрате = 144
х=12 - ответ.