Если точка равноудалена от сторон треугольника, товысота оущенная из этой точки падает в центр впмсанной окружности, радус вычисляем по формуле (а+в-с)/2, где а и в - катеты с- гипотенуза. один катет известен -8, второй вычисляем по теореме пифагора
км=5 . радиус впмсанной окружности равен (12+5-13)/2=2
обозначим центр впмсанной окружности О, пусть окружность касается катета КМ в точке Д
треугольник АОД прямоугольный -АО перпендикуляр к плоскости треугольника - и есть искомое расстояние АД =8, ДО=2 По тореме пифагора находим
АО =√60=2√15
Надо дугу АБ+дуга BC получится 156 угол ABC
Дано: ΔABC, ∠A = 2∠B, ∠C = ∠A + 10°
Найти: ∠A - ?, ∠B - ?, ∠C - ?
Решение:
∠A + ∠B + ∠C = 180 (сумма углов треугольника равна 180°)
∠A заменим на 2∠B из равенства ∠A = 2∠B;
∠C = ∠A + 10°, здесь ∠A тоже заменим на 2∠B
Получаем:
2∠B + ∠B + 2∠B + 10 = 180
5∠B + 10 = 180
5∠B = 180 - 10
5∠B = 170
∠B = 170/5 = 34°
∠A = 2∠B = 34 * 2 = 68°
∠C = ∠A + 10 = 68 + 10 = 78°
Ответ: ∠B = 34°, ∠A = 68°, ∠C = 78°
Дан треугольник АВС, ВН - медиана к стороне АС, АК - мелиана к стороне ВС. Пусть L пересекает АС в точке Х, а ВС в У. Нужно найти ХУ.
Треугольник АВН подобен треугольнику ХОН (они оба прямоугольные; угол ВАН=угол ОХН, поскольку АВ||ХУ; угол АВН=угол ХОН). Тогда АВ/ХО=ВН/ОН=АН/ХН. (*)
Поскольку АС = 24 см, а ВН - медиана, то АН=НС=12 см. Из треугольника НОС: ОН=корень из (СО^2 - СН^2)=корень из (225-144)=9 (см). По свойству медианы: ВО/ОН=2:1, тогда ВО=18 см, а ВН=27 см.
(*)=> ВН/ОН=АН/ХН. 27/9 = 12/ХН. ХН=4 см.
Из треугольника ХОН по теореме Пифагора ОХ = корень из 97 (см).
Тогда длина ХУ = 2ОХ = 2×корень из 97 (см).
Ответ: ХУ = 2×корень из 97 (см).