(5х- 1)·
25x²+ 2,5x- 5x- 0,5= 0
25x²- 2,5x- 0,5= 0 |: 0,5
50x²- 5x- 1=0
Решим квадратное уравнение через дискриминант:
D= b²- 4ac
D= 25+ 200= 225
√D= 15
x₁=
x₁=
x₂=
x₂=
Ответ: х₁=
; x₂=
0=3х-1
-3х=-1
х=-1/-3
х=1/3
5=3х-1
-3х=-5-1
-3х=-6
х=-6/-3
х=2
Y / y - 9 - 9/ y - 9 = (y - 9) / ( y - 9) = 1
ОТВЕТ в приложенном файле. Извините, если что-то не так
2) log0,5_(2x+1) = - 2;
- log2_(2x+1) = - 2;
log2_(2x+1) = 2;
2x+ 1= 2^2;
2x = 3;
x= 1,5.
3)log2_(4 - 2x) + log2_3 = 1;
log2_((4-2x)*3 = 1;
log2_(12 - 6x) = 1;
12 - 6x = 2^1;
12 - 6x = 2;
- 6x = -10;
x = 10/6= 5/3.
4) log7_(x-1) = log7_2 + log7_3;
log7_(x-1) = log7_(2*3);
x - 1 = 6;
x = 7.
5)1 ≤ 7x - 3 < 49; +3
1 + 3 ≤ 7x < 49 + 3;
4 ≤ 7x < 52;
4/7 ≤ x < 52/7.
6) log2_(1 - 2x) < 0;
log2_(1 - 2x) < log2_1;
2 > 1; ⇒ 1 - 2x < 1;
- 2x < 1 - 1;
- 2x < 0; /-2 < 0;
<u>x > 0
</u> 7) lg(0,5 x - 4) < 2;
lg(0,5x - 4) <lg100;
0,5x - 4 < 100;
0,5 x < 104; * 2>0;
<u>x < 208
</u><u />8) log0,2_(2x+3) ≥ - 3; 0,2 = 1/5 = 5^(-1);
- log5_(2x + 3) ≥ - 3; /-1 <0;
log5_(2x + 3) ≤ 3;
log5_(2x+3) ≤ log5_125;
5 > 1; ⇒ 2x + 3 ≤ 125;
2 x ≤ 122;
x ≤ 61.
В первом задании не понятно условие.
<u>
</u>