<BAD =50 , <ABD=90 , <ADB=180-90-50=40
Так как ВС=ДС Б то треуг.ВСД - равнобедренный и углы при основании равны --->
<CBD=<CDB. Но <ADB=<CBD=40, как накрест лежащие углы при параллельных прямых ВС и АД и секущеё ВД.
<ADC=<ADB+<CDB=40+40=80
<ABC=90+40=130
<span><BCD=360-130-80-50=100 ( либо <BCD=180-(<CB +<BDC)=180-40-40=100)</span>
Обозначим середину стороны AB как E (см. рисунки). ED — средняя линия треугольника ABC, которая параллельна стороне AC. Следовательно, угол BAC — прямой.
Теперь есть два решения.
1) Искомый угол в два раза меньше прямого угла. Тогда он равен 45°.
2) Искомый угол в два раза меньше второго острого угла. Тогда, поскольку сумма двух острых равна 90°, он равен 2x+x=90°; 3x=90°; x=30°.
Ответ: либо 30°, либо 45° (если допустить, что в треугольнике есть два наименьших угла).
Пусть МО⊥(АВС).
Проведем ОН⊥AD и ОК⊥АВ.
ОН и ОК- проекции наклонных МН и МК на плоскость прямоугольника, тогда и МН⊥AD, МК⊥АВ по теореме о трех перпендикулярах.
∠МАО = φ - угол между наклонной АМ и плоскостью прямоугольника,
∠МАН = ∠МАК = α = 50° - угол между наклонной АМ и сторонами AD и АВ прямоугольника.
ΔМАН
= ΔМАК по гипотенузе и острому углу (АМ общая, ∠МАН = ∠МАК = α), значит
АК = АН, и значит АКОН - квадрат и АО - его диагональ, а следовательно и
биссектриса угла BAD.
Стоит запомнить, что наклонная,
проведенная через вершину угла, лежащего в плоскости, и образующая
равные углы с его сторонами, проецируется на биссектрису этого угла.
Пусть а - сторона квадрата АКОН.
Тогда АО = а√2, как диагональ квадрата.
ΔАМН: АМ = AН / cosα = a / cos α
ΔAMO: cos φ = АO / AM = a√2 / (a / cos α) = √2cos α
cosφ = √2cos50°
φ = arccos(√2cos50°)
V=S*H*1/3
S=4*4=16
BD- діагональ квадрата ABCD
BD=√16+16=√32=4√2
BO=4√2/2=2√2
ΔBOS:
OS²=17-(2√2)²=17-8=9
OS=3
V=16*3*1/3=16 (см³)