Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель - это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель - это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.
Очевидно, что если бы все вычисления в вопросе проводились в числах, записанных в десятичной системе счисления, то вопрос бы большого смысла не имел. Не имеет смысла спрашивать, чему равно 84, если всё проводится с обычными десятичными числами. То есть методом исключения мы определили, что в примере с умножением применена какая-то иная система, не десятичная. Нужно выяснить, какая именно. Мы видим, что результат, который должен был бы равен 64, записывается в той системе как 54. Нет сомнения, что 5 — это цифра десятков, а 4 — цифра единиц. Обозначим переменной x пока неизвестное нам искомое основание системы. Составим уравнение:
5x + 4 = 64,
откуда:
5x = 60;
x = 12.
Мы нашли, что умножение проводилось по двенадцатеричной системе. Теперь мы можем найти, чему равно двенадцатеричное число 84 по нашей общепринятой десятичной системе:
8 * 12 + 4 = 96 + 4 = 100.
Ответ: 84 (12) = 100 (10). В скобках — основания систем счисления.
Пусть рубашка стоит 100 единиц, тогда брюки будут стоить 130 единиц, а пиджак будет стоить 169 единиц. Он дороже брюк на 39 единиц. Единиц, но не процентов. А вот 39 единиц от 130 единиц будут составлять всего 30%.
Ответ: пиджак дороже брюк на 30%.
Насколько я понял, R – это значок функции, например f(x). Поэтому запишем ваш первый интеграл так I = int[f(sinx)cosxdx]. Сюда входят и синус и косинус. Самый простой способ решения это заменить косинус на синус, или наоборот. При этом надо знать следующее равенство: d(sinx) = cosxdx. Или cosxdx = d(sinx). Тогда ваш интеграл примет более удобный вид I = int[f(sinx)dsinx]. Сюда входит только одна функция sinx. Чтобы было еще понятней, сделаем такую замену переменных: sinx = z. Тогда I = int[f(z)dz]. Для того чтобы решить этот интеграл, надо знать конкретный вид функции f(z).
Возьмем ваш второй интеграл I = int[f(cosx)sinxdx]. Метод решения тот же самый. Но надо вспомнить дифференциал от косинуса. Он тоже есть в таблицах. d(cosx) = -sinxdx. То есть sinxdx = - d(cosx). Тогда ваш второй интеграл примет вид I = -int[f(cosx)d(cosx)]. Для удобства введем замену переменных cosx = z. Имеем I = -int[f(z)d(z)]. Интегралы в алгебраическом виде решать проще, чем в тригонометрическом виде. И здесь надо знать конкретный вид функции f(z).
Теперь ваш третий интеграл int[f(sinx,cosx)dx]. Сделаем такую же замену переменных, как и в предыдущем случае. Здесь уже сложнее. Надо в подинтегральном выражении оставить только синус или только косинус, сделать что проще. Например, выразим sinx через cosx. Из тригонометрии мы знаем, что sin^2(x) + cos^2(x) = 1. То есть сумма квадратов синуса и косинуса равна 1. Отсюда sin^2(x) = 1 - cos^2(x). Тогда sinx = корень[1 - cos^2(x)]. Где корень[ ] означает взять квадратный корень из выражения, стоящего в квадратных скобках. То есть мы заменили синус на косинус. Остается интеграл только от косинуса. I = int[f(cosx)]dx. Например, имеем интеграл I = int[cos^2x * sinxdx]. Заменим синус на косинус. I = int{cos^2x * корень[1 - cos^2(x)]dx}. Получилось сложное выражение. Но метод решения вашего интеграла – надо выразить синус через косинус или косинус через синус, и выбрать что проще. Для решения интеграла int[f(cosx)]dx тоже бывает проще перейти к алгебраическому выражению. Сделаем замену переменных cosx = z. Но dz = dcosx = -sinxdx = - корень[1 – cos^2x]dx = - корень[1 – z^2]dx. Отсюда dx = -dz/корень[1 – z^2]. Имеем I = int[f(cosx)]dx = -int[f(z)dz/корень(1 – z^2)].
Криволинейная трапеция – это плоская фигура, контуры которой ограниченны: а) внизу – осью абсцисс, б) по бокам – вертикальными прямыми, в) верхний контур – графиком неотрицательной неприрывной функции. Как и любая плоская фигура, криволинейная трапеция имеет площадь (без названия).
А вот ФОРМУЛА, с помощью которой определяется эта площадь, название имеет. Вычисление площади проводят с применением интеграла.
В 19 веке идеи интегральных исчислений были приведены в математическую систему английским физиком Иссаком Ньютоном и немецким философом, математиком и физиком Вильгемом Лейбницом. К окончательному верному выводу ученые шли разными путям. И дабы не обидеть никого из них, по решению других ученых, было принято такое решение.
Формула, с помощью которой определяется площадь криволинейной трапеции носит название этих двух ученых – формула Ньютона-Лейбница.