Cos3α cos4α - sin3α sin4α = cos (3α+4α) = cos 7α
Подкоренное выражение корня чётной степени должно быть ≥ 0, а знаменатель дроби не должен равняться 0.
(2x + 4)(3 - x) ≥ 0 x + 1 ≠ 0
2(x + 2)(x - 3) ≤ 0 x ≠ - 1
(x + 2)(x - 3) ≤ 0
+ - +
_____________________₀________________________
- 2 - 1 3
/////////////////////////////////////////////
Область определения: все x ∈ [- 2 ; - 1)∪(- 1 ; 3]
(7,2a-1,6b)-(3,4b+2,2a-3)=
7,2a-1,6b-3,4b-2,2a+3=5a-5b+3
-4<x-3.5≤1.5
Прибавим по 3,5 ко всем частям неравенства
-4+3.5<x≤1,5+3.5
-0.5<x≤5
Сюда попадают целые числа: 0, 1, 2, 3, 4, 5. Всего 6 штук
Ответ: 6
=sin²α(cos²α-sin²α-(cos²α+sin²α)+1)/(1-sin²α)=sin²α(1-2sin²α)/(1-sin²α)=
=(2/3)²*(1-2*(2/3)²/(1-(2/3)²)=(4/9*1/9)/(5/9)=4/45.