Углы BAC и ВCA = (180 - 80) / 2 = 50 градусов, т.к. углы (BAC и ВCA) при основании (AC) в равнобедренном треугольнике равны. Т.к. биссектриса делит угол на два равных, то угол BCD и ACD = BCA / 2 = 25 градусов. Угол ADC = 180 - (50 + 25) = 105 градусов (по теореме о сумме углов). Ответ: углы: ADC = 105, DAC = 50, DCA = 25 градусов.
Обозначим заданные углы α, сторона основания а, боковое ребро L.
Проекция бокового ребра на основание равна длине стороны основания (свойства правильной шестиугольной пирамиды).
cos α = a/L. (1)
В боковой грани sin (α/2) = (a/2)/L.
Используем формулу двойного угла:
cos α = 1 - 2sin²(α/2) и подставим значение синуса половинного угла.
cos α = 1 - 2*(a²/(4L²)) = 1 - a²/(2L²). (2)
Приравняем значения косинуса искомого угла по формулам (1) и (2).
a/L = 1 - a²/(2L²).
Замена: a/L = х.
Тогда х = 1 - (х²/2).
Получаем квадратное уравнение:
х² + 2х - 2 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=2^2-4*1*(-2)=4-4*(-2)=4-(-4*2)=4-(-8)=4+8=12;Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√12-2)/(2*1)=(√12/2)-(2/2)= √3-1 ≈ 0.73205;x_2=(-√12-2)/(2*1)=-√12/2-2/2=-√3-1 ≈ -2.73205 (отбрасываем).
Искомый угол равен arc cos (√3-1) = <span><span><span>
0,749469 радиан =
</span><span>
42,9414</span></span></span>°.<span><span><span /></span></span>
А-боковая сторона
в-основание
в=а+6
периметр сумма всех сторон(а+а+в)
боковые стороны равны
2а+(а+6)=42
3а=36
а=12
в=12+6=18
боковые стороны 12 см, основание=18см
Треугольная пирамиды: а=6, V=12√3 H=4