Трёхзначных чисел всего существует девятьсот штук.
✔ Как сосчитать количество трёхзначных чисел?
Все знают, что трёхзначное число состоит из трёх цифр, первое из них 100 (предыдущее двухзначное 99),
а самое большое 999 (так как следующее уже четырёхзначное 1000).
От 100 начинаем считать: 100, 101, 102... и до 999 получится 900 чисел.
Можно сделать арифметическое действие: из 999 надо вычесть 99 или из 1000 вычесть 100, чтобы получить правильный ответ, 900
✔ Теперь сколько всего из них чётных и нечётных?
Чётные чередуются с нечётными цифрами по- очереди, соответственно, чтобы узнать их количество надо 900 разделить пополам, получаем 450 чётных и столько же нечётных трёхзначных чисел 450.
<hr />
✔ Сколько 3-хзначных чисел можно составить если цифры не повторяются..?
Для того чтобы возвести число в дробную степень нужно выполнить две операции: во-первых, возвести число в степень числителя дробной степени (числитель - это то что у дроби находится сверху), во-вторых, из того что получилось после возведения в степень нужно извлеч корень той степени чему равен знаменатель дробной степени (знаменатель - это то что стоит внизу дроби). Например, нам нужно возвести 3 в степень 3/7, сначало мы возводим 3 в степень числителя т.е. в куб, получаем 27, а затем извлекаме корень седьмой степени. Если дробная степень представленна с целой частью, то есть например нужно 2 возвести в степень 1 целая 1/3 то степень нужно представить в виде обычной дроби т.е. в данном случае это будет 4/3, а затем производить вычисления, 2 возводим в 4 степень получаем 16 и затем берем кубический корень из 16. Таким же образом в случае если нужно возвести число в степень 1,5, степень можно представить в виде обычной дроби 15/10 или 3/2 и произвести вычисления.
Для перевода двоичного числа 1110001 в десятичную систему используем формулу:
1110001₂=1*2^6+1*2<wbr />^5+1*2^4+0*2^3+0*2^2+<wbr />0*2^1+1*2^0=113₁₀ , где знаком ^ ообозначена операция возведения в степень.
Математическая запись этого преобразования выглядит так:
Если это число делится на 66,значит оно делится на 2; 3;11 (2*3*11=66).Воспольз<wbr />уемся признаками делимости на эти сомножители.Понятно что это число чётное,сумма его цифр делится на 3 и сумма цифр стоящая на четных местах равна сумме цифр стоящих на нечётных местах.Пусть цифры в нашем числе: а,в,х,у.Сумма каких четных разных цифр даст число делящееся на 3? Вариант-2,4,6,8=20( не подходит).Остаются только следующие наборы -0,2,4,6=12 и 0,4,6,8=18.Но по признаку делимости на 11 второй набор не подходит.Остается набор из цифр-0,2,4,6.Теперь можем написать числа кратные 66.Это-2046,2640,402<wbr />6,4620,6204,6402.Пров<wbr />ерка-2046:66=31; 2640:66=40-ну хватит двух чисел.Ответ-2046,264<wbr />0,4026,4620,6204,6402<wbr />.
Запишем числа 2√7 и 7√2 в таком виде √28 и √98 соответственно. Теперь ясно, что число 2√7 больше 5, но меньше 6, а число 7√2 больше 9, но меньше 10.
Теперь легко подсчитать количество целых чисел между этими числами. Это такие числа, как 6,7,8 и 9. Всего целых чисел, которые расположены между числами 2√7 и 7√2 - 4. Ответ: четыре (4).