-√24^2=-<span>√576=-24
Что тут трудного </span>
10 испытаний с двумя возможными исходами и постоянной вероятностью этих исходов.
Из них 6 успехов. , причем без разницы в какой очередности происходят успех или неудача.
Так что получаем
C[6,10]* (1\2)^6*(1/2)^4=C[6,10]/2^10=105/512
<span>где C[6,10]. - это число возможных выборок 6 из 10</span>
У меня получилось так
log_(8x^2-23x+15) (2x-2) <= 0
Во-первых, область определения
{ 8x^2-23x+15 > 0
{ 8x^2-23x+15 =/= 1; то есть 8x^2-23x+14 =/= 0
{ 2x-2 > 0
Решаем
{ (x - 1)(8x - 15) > 0
{ (x - 2)(8x - 7) =/= 0
{ x > 1
Получаем
{ x = (-oo; 1) U (15/8; +oo)
{ x =/= 2; x =/= 7/8
{ x > 1
Область определения:
x = (15/8; 2) U (2; +oo)
Рассмотрим случай
log_(8x^2-23x+15) (2x-2) = 0
2x - 2 = 1
x = 3/2 = 12/8 < 15/8 - не входит в область определения.
Рассмотрим случай
{ 8x^2-23x+15 < 1; то есть 8x^2-23x+14 < 0
{ log_(8x^2-23x+15) (2x-2) < 0
Решаем
{ (x - 2)(8x - 7) < 0
{ 2x-2 > 1
Получаем
{ 7/8 < x < 2
{ x > 3/2
{ x = (15/8; 2) U (2; +oo)
Решение:
x = (15/8; 2)
Рассмотрим случай
{ 8x^2-23x+15 > 1; то есть 8x^2-23x+14 > 0
{ log_(8x^2-23x+15) (2x-2) < 0
Решаем
{ (x - 2)(8x - 7) > 0
{ 2x-2 < 1
Получаем
{ x = (-oo; 7/8) U (2; +oo)
{ x < 3/2 = 12/8
{ x = (15/8; 2) U (2; +oo)
Решений нет
Ответ: x = (15/8; 2)
1,5х - 9у - (у + 1,5х) = 1,5х - 9у - у - 1,5х = -10у