(3х-4у)(3х+4у) = 9x^2 - 12xy + 12xy - 16y^2 = 9x^2 - 16y^2;
Ответ: А
для начала воспользуемся формулой приведения и заменим sin(x-pi/2) на -cosх. и домножим на (- cos^2x). получаем.
что уже дает три корня на заданном отрезке (π/2, 3π/2, 5π/2)
Значит уравнение
не должно иметь корней на промежутке [0; 2,5π]
Рассмотрим 3 случая1)
Допустим, уравнение cosx=2a+3 не имеет решение вообще. Такое произойдет при
так как cosx∈[-1; 1]
2)
Корни имеет, но не имеет решение именно на промежутке [0; 2,5π]. Такой вариант невозможен в связи с периодом функции 2π.
3)
Корни уравнения cosx=2a+3 совпадают с корнями уравнения cosx=0
2a+3=0
a=-1,5
Ответ: a∈(-∞; -2)U[-1,5]U(-1; +∞)