ОДЗ: x+3≠0 x≠-3
(1-2x)/(x+3)>0
1-2x>0 x<1/2 1-2x<0 x>1/2
x+3>0 x>-3 x∈(-3;1/2) x+3<0 x<-3 x∉
lg((1-2x)/(x+3))≥0
lg((1-2x)/(x+3))≥lg1
(1-2x)/(x+3)≥1
1-2x≥x+3
3x≤-2
x≤-2/3 ⇒
x∈(-3;-2/3].
√5х+6=-х всё уравнение возводим в ²
5х+6=х²
-х²+5х+6=0 /-1
х²-5х-6=0
д=в²-4ас=25-4*1*(-6)=25+24=49⇒√д=7
х1=5-7/2=-1
х2=5+7/2=6
2^2-24=0
4^2+61 = 64+16
3)24^2/5 = 3x 1/4
fjjfjf
85^ya chf
(24 - 9 )
A₁ = -4
a₂ = -1
a₂ = a₁ + d
-1 = -4 + d
d = 3
a₆ = a₁ + d(6-1) = -4 + 5*3 = 11
S = (a₁+a₆)n / 2 = (-4 + 11)6 / 2 = 21