Построение.
Проводим прямую "а". От прямой "а" откладываем данный нам угол, для чего берем произвольную точку А на этой прямой и от нее строим угол, равный данному.
Для этого произвольным раствором циркуля проводим окружности с центрами в вершине А данного нам угла и в точке А на прямой "а".
На данном нам угле получаем точки "m" и "n", а на прямой "а" - точку М. Радиусом r=mn с центром в точке М проводим окружность и в месте пересечения двух окружностей ставим точку N.
Проведя прямую AN получаем вторую сторону данного нам угла.
На этих сторонах откладываем циркулем отрезки АС и АВ, равные данному отрезку "а" и четырем отрезкам "а" соответственно.
Соединив точки В и С, получаем искомый треугольник АВС.
<span>я бы пошёл таким путём:</span>
<span>очевидно, что треугольник МАС прямоугольный, причём катеты у него 5 и 12</span>
<span>откуда мы можем найти угол МСА (по теореме синусов, хотя бы)</span>
<span>теперь рассмотрим треугольник ЕОС (О - центр окружности)</span>
<span>он равнобедренный со сторонами ОЕ и ОС по 6</span>
<span>можем найти его углы</span>
<span>ЕСО = МСА</span>
<span>СЕО = ЕСО = МСА</span>
<span>ЕОС = 180 - 2*МСА</span>
<span>теперь рассмотрим треугольник ЕОА</span>
<span>он тоже равнобедренный со сторонами ЕО и АО по 6</span>
<span>и угол ЕОА = 180 - ЕОС = 180 - 180 - (-2*МСА) = 2*МСА</span>
<span>теперь мы знаем две стороны (по 6) и угол между ними (ЕОА = 2*МСА)</span>
<span>по теореме косинусов можем найти противоположную сторону АЕ</span>
<span>всё</span>
Цилиндр. Sбок. пов=2πRH, Sб.пов.=πDH, S=πD²
осевое сечение - равнобедренный прямоугольник с диагональю 12 см
по т. Пифагора: d²=D²+H², d²=2D². 12²=2D², D²=72
S=π*72
Sб.пов=72π см²