Ответ:
k - угловой коэффициент
b - число параллельного переноса по оси OX
Решение:
Рассмотрим два возможных случая:
1) Если 3а - 2 = 0, т.е. 3а = 2, а = 2/3, то
0•х^2 - (4-6• 2/3)•х+2/3+2=0
0•х = - 2 2/3
Линейное уравнение корней не имеет.
2) Если 3а - 2 не равно 0, а не равно 2/3, то
Квадратное уравнение имеет корни в том случае, когда его дискриминант неотрицательный.
D = b^2 -4ac
D = (4 - 6a )^2 -4• (3a - 2)•(a + 2) = 16 - 48a + 36a^2 - 12a^2 + 8a - 24a + 16 = 24a^2 - 64а +32 = 8•(3a^2 - 8а + 4);
D ≥0,
D1 = 64 - 48 = 16
a1 = (8 + 4):6 = 2
a2 = (8 - 4) : 6 = 2/3
24( a - 2)(a -2/3) ≥0
___+___(2/3)____-___[2]___+___а
Получили, что уравнение
(3а-2)х^2 - (4-6а)х + а + 2 = 0 имеет действительные корни при всех значениях а, принадлежащих промежуткам:
(- ∞; 2/3) U [2; + ∞)
Не вижу ошибок. Все правильно.
1) 2tg^2(x)+3tg(x)-2=0
tg(x)=t
2tg^2(t)+3t-2=0
D=b^2-4ac=25
t1,2=(-b±√D)/2a
t1=-2
t2=0,5
a) tg(x)=-2 => x=arctg(-2)+pi*n
б) tg(x)=0,5) => x=arctg(0,5)+pi*n
4) cos(2x)=2cos(x)-1
2cos^2(x)-1`=2cos(x)-1
2cos^2(x)-2cos(x)=0
2cos(x)*(cos(x)-1)=0
a) cos(x)=0 => (pi/2)+pi*n
б) cos(x)-1=0 => cos(x)=1 => (pi/2)+2pi*n
6) sin(7x)-sin(x)=cos(4x)
2sin(3x/2)*cos(4x)=cos(4x)
2sin(3x/2)*cos(4x)-cos(4x)=0
cos(4x)*(2sin(3x/2)-1)=0
a) cos(4x)=0 => 4x=(pi/2)+pi*n => x=(pi/8)+pi*n/4
б) 2sin(3x/2)-1=0 => 2sin(3x/2)=1 => sin(3x/2)=1/2 => 3x/2=(pi/6)+pi*n =>
3x=(pi/3)+2*pi*n => x=(pi/9) +2*pi*n/3
Это будет 0, 6 решение очень простое
3,4+1,6*(-2,5)=3,4-4=0,6