АВ/KM=8/10=0,8
BC/MN=12/15=0,8
AC/NK=16/20=0,8
Треугольники АВС и KMN - подобные (по третьему признаку).
Отношение площадей подобных треугольников равно квадрату коэффициента подобия:
Ответ: 0,64.
19. дано: ав=вс=са=8см ; Угол вак=углу сак; вк=?; Угол вак=?
Решение:
Т.к. треугольник авс-равносторонний , то ак является биссектрисой, медиатор, высотой. значит вк=кс=8÷2=4см
Т.к. треугольник авс-равносторонний , то угол а=60°. значит угол вак = 60°÷2=30°
Если есть вопросы-спрашивай!
В прикрепленном файле показан "вид сверху" на прямоугольник MNBA. Треугольник АВС наклонен (вершина С БЛИЖЕ к нам, чем плоскость прямоугольника) Размеры взяты в скобки, потому что соответствуют наклонным отрезкам. Рядом показан вид сбоку, на треугольник ВСМ.
Задачка упрощается благодаря тому, что 5,12,13 - пифагоровы числа, то есть АВС - прямоугольный тр-к, то есть проекция С1 лежит на BN (я сразу так и нарисовал). Нам надо найти угол СВМ в треугольнике СВМ, это и будет искомый двугранный угол (плоскость СВМ перпендикулярна АВ, потому что АВС - прямоугольный треугольник, а МВ - по условию, MNBA - прямоугольник).
Но СВМ - тоже прямоугольный треугольник (стороны 9, 12 и 15, опять пифагоровы числа). Поэтому, сразу ответ -
arcsin(3/5)
Если бы С1 не попадала на сторону ВМ, и если бы СМВ тоже не был бы прямоугольным, задача усложнялась бы, но не так, чтобы очень :) - всё сводилось бы к применению теоремы косинусов в двух треугольниках с заданными сторонами.
УголС=180-уголB=60° (в параллелограмме сумма углов, прилежащих к одной стороне равна 180°)
уголА=углуС (в параллелограмме противолежащие углы равны)
В треугольнике АDH, уголН=90°,
уголНDА+уголН+уголА=180°
уголНDА=180-60-90=30°
AD=2AH=8 (т.к. в прямоугольном трейгольнике сторона, лежащая напроти угла в 30°, равна половине гипотенузы)
Р=2АВ+2АD=2(7+4)+2×8=22+16=38.
Ответ:38.
Касательная перпендикулярна радиусу. Получился прямоуг. треугольник АВО
Либо по т. Пифагора находим АВ, либо видно, что треуг. египетский. Т.е. АВ=8