В прямоугольной системе координат даны векторы а {3; -2} и b{1; -2}. Найдите координаты вектора с=5а- 9b и его длину. Постройте вектор с , если его конец совпадает с точкой М(3;2).
Решение.
Умножение вектора на число: pa=(px1;py1), где p - любое число. Тогда
Вектор 5a{15;-10}
Вектор 9b{9;-18}
Разность векторов : a-b=(x1-x2;y1-y2). Тогда
Вектор c{6;8}.
Длина вектора (его модуль) |c|=√(x²+y²). Тогда
|c| = √(36+64) =10.
Чтобы найти координаты вектора, заданного координатами начала и конца, надо от координат КОНЦА отнять соответствующие координаты НАЧАЛА.
Зная координаты конца вектора, находим его начало:
то есть 6=3-х, 8=2-y, откуда находим точку начала вектора с: Р(-3;-6).
Зная координаты начала и конца вектора, легко построить его на координатной плоскости. (смотри рисунок).
Вот ответ на фото, вроде 30
треугольник АВС, уголС=90, АС=12,8, СН-высота на АВ=6,4, треугольникАСН прямоугольный, СН=1/2АС, 6,4=1/2*12,8, значит уголА=30, тогда уголВ=90-30=60