перпендикуляром, опущенным из данной точки А к данной прямой а называется отрезок прямой в, перпендикулярной к прямой а, одним концом которого является данная точка А, а другим - точка пересечения прямых а и в
С помощью которого вы можете прислать мне скан ответ с
<span>Нарисуем равнобедренную трапецию.</span> Обозначим ее вершины АВСD.
Опустим из вершины В высоту Вh на основание АD.
Получился <span>равнобедренный прямоугольный треугольник ВhD</span>, так как диагональ ВD образует с основанием угол 45 градусов. .
<span>Катеты этого треугольника равны 8</span>, так как гипотенуза в нем 8√2.
<span>Продлим основание ВС.</span>
Из вершины D основания АD возведем перпендикуляр DН до пересечения с продленной ВС.
<span>Рассмотрим прямоугольник ВhDН</span>
В нем СН равен отрезку Аh на основании трапеции, так как АВ=СD и Вh=НD.
Высота в нем равна основанию.
Отсюда <span>площадь этого квадрата ВhDН равна площади трапеции АВСD.</span>
<span>Площадь</span> квадрата <span> ВhDН =</span>
S= Вh* hD=8²=64
S трапеции=64 ед²
в ΔАВС cosA=AC/AB, AC=AB·cosA=16·3/4=12, в ΔАСН cosA=AH/AC, AH=AC·cosA=12·3/4=9
Площадь треугольника ABH равна половине площади равностороннего треугольника с высотой BH (высота делит равносторонний треугольник на два прямоугольных треугольника с углом 60°).
Площадь равностороннего треугольника с высотой h: h^2/√3
S(ABH)= BH^2/2√3
Прямоугольный треугольник с углом 45° - равнобедренный.
△CBH - равнобедренный, BH=CH
S(CBH)= BH*CH/2 =BH^2/2
S(ABC)= S(ABH)+S(CBH) =BH^2(√3+3)/6 =0,7886*BH^2 =19,72 (см)