Пусть СВ=х. тогда 6х;
По условию: х+6х=35,
7х=35,
х=35/7,
х=5.
Ответ 5 см.
Проекция боковой стороны трапеции на основание трапеции
(11-5)/2 = 3 см
Высота из тупого угла трапеции к основанию, длина h, образует два прямоугольных треугольника, в одном гипотенуза - боковая сторона a, в другом - диагональ трапеции
10² = h²+(11-3)² - для того, что с диагональю
100 = h² + 64
h² = 36
h = 6 см
Площадь трапеции
S = 1/2(11+5)*6 = 16*3 = 48 см²
теперь найдём высоту призмы
её диагональ как гипотенуза, диагональ трапеции в основании и высота призмы H как катеты образуют прямоугольный треугольник
26² = H² + 10²
676 = H² + 100
H² = 576
H = 24 см
И объём
V = S*H = 48*24 = 1152 см³
Делаешь чертеж, получается, что мо = 14 и о - точка пересечения диагоналей квадрата, мо перпендикулярно плоскости.( по условию м равноудалена от сторон, значит находится по центру) при этом, из м проводишь перпендикуляры к серединам сторон квадрата, которые равны 50. получаешь прямоугольный треугольник с гипотенузой 50 и катетом 14. соответственно другой катет по т. пифагора = 48. этот катет - половина стороны квадрата, т.к. если его продлить, то он пересечет др. соорону в точке, так же делящей сторону пополам. значит, прямая параллельна сторонам, а точка о делит ее пополам. следовательно, сторона квадрата = 48*2 = 96 сторона 96, тогда диагональ = корень из (2*96*96) = 96*корень из 2. расстояние от вершины до м = гипотенузе в треугольнике с катетами мо и тем, что равен половине диагонали (жиагональ до точки о), половина диагонали = 48*кор(2) таким образом, искомое расстояние = корень из (14*14+2*48*48)=кор(4804)<span> ответ: сторона 96, расстояние кор(4804)</span>
Cos острого угла F - это отношение прилежащего катета к гипотенузе, трестов надо поделить величину катета на величину гипотенузы, после получившееся число ввести в калькулятору и найти Cos