Находим координаты точки М с учётом λ = <span>А М : МВ = 2 : 1 = 2.
</span>
Коэффициент к(АВ) = Δу/Δх = (2-5)/(8+1) = -3/9 = -1/3.
Коэффициент к перпендикулярной прямой равен:
к = -1/(к(АВ)) = -1/(-1/3) = 3.
Уравнение перпендикулярной прямой у = 3х + в.
Коэффициент в находим, подставив в уравнение координаты точки М:
3 = 3*5 + в.
в = 3 - 15 = -12.
Ответ: у = 3х - 12.
так как вершины лежат на серединах сторон ⇒ стороны второго тр-ка являются средними линиями этого исходного треугольника и равны 1/2 его сторон.
отсюда стороны тр-ка равны 4, 6 и 2,5.
P=4+6+2.5=<u>12.5</u>
<span>циркулем.Проводишь из вершины данного угла окружность любого радиуса, и на луче от его начала проводишь окруж-сть такого же радиуса.Затем от точки где пересекается окружность и одна из сторон нашего исходного угла, проводим ещё окружность,но уже такого радиуса,чтобы эта окруж-сть касалась второй стороны этого угла.На луче проводим точно такую же </span>
<span>окруж-сть,причём центр этой окруж-сти есть точка пересечения первой окруж-сти(это которая была произвольного радиуса) и луча.Должна получиться ещё одна точка,где пересекаются эти две окружности(точнее,этих точек пересечения две,но разницы нет).Соединяем начало луча с этой точкой,и получится искомый угол.</span>
Жуль Верн "Дети капитана Гранта"
Каверин "Два капитана"