Окружности с центрами в точках E и F пересекаются в точках C и D, причем точки E и F лежат по одну сторону от прямой CD. Докажите, что CD и EF перпендикулярны.
<span>Перечерти мой рисунок. Далее рассматриваем тр.-ник
ECD.В нём EC=CD(следовательно треугольник равнобедренный) и проведён
диаметр EK.Нам нужно доказать,что он (EK) перпендикулярен CD.Для этого
строим FC и FD,опять равнобедренный треугольник FCD,где FC=FD.Из
равенства углов ECD=CDE и FCD=FDC получаем,что ECK=KDE.Выходит,что
треугольник ECF и EDF равны по двум сторонам и двум углам между ними.Из
этого следует,что угол CEK=DEK. Теперь вернёмся к треугольнику ECD.В нём EK-биссектрисса,а значит и медиана.Отсюда следует,что CK=KD.Теорема доказана.</span>