Проведешь биссектрису ОА Следовательно угол OAC =30°
угол AOC=180° -(90°+30°)=180°-120°=60°
угол BOC=2 углам AOC=2*60°=120°
ответ:120°
А в чём заключается вопрос?
Эта задача на много проще, чем кажется.
Если из центра окружности (который лежит на гипотенузе) опустить перпендикуляры на катеты, то получится квадрат и два треугольника, подобных исходному. Если обозначить радиус окружности r, больший катет большего треугольника b, меньший катет меньшего треугольника a,
то стороны исходного треугольника будут такие
(a + r, b + r, 35)
стороны меньшего треугольника
(a, r, 15)
стороны большего
(r, b, 20)
и все эти три треугольника подобны между собой.
отсюда a/r = 15/20 = 3/4;
то есть все эти три треугольника - египетские (подобные треугольнику со сторонами 3, 4, 5)
То есть уже можно написать ответ :) вычислять уже ничего не надо, надо просто "подобрать" коэффициенты подобия, чтобы гипотенузы египетских треугольников были бы 15 и 20. Само собой, это 3 и 4.
То есть a = 9, r = 12, b = 16; (получились треугольники 9, 12, 15 и 12, 16, 20)
Исходный треугольник имеет стороны 21, 28, 35, его площадь 294;
длина полуокружности πr = 12π;
Весь "трюк" в том, что r - одновременно больший катет в одном из подобных треугольников и меньший - в другом.
1.Тангенс дает нам отношение сторон, т.к. tgВАС=4/3, значит сторона СВ так относится к стороне АС, как 4 к 3, по теореме Пифагора можно посчитать гипотенузу(она равна 5), следовательно треуг-к АВС является египетским (СА=3х, СВ=4х, АВ=5х)
2. Треуг-к АВС подобен треуг-ку СРВ(по двум углам), следовательно СРВ тоже египетский. Значит его стороны тоже относятся как 5:4:3.
Пусть у - одна часть, тогда СВ=5у, РВ=4у,СР=3у
Scpb= 1/2×3у×4у=6у²
Воспользуемся формулой радиуса вписаной окр-ти r1=2S/a+b+c, тогда 60=12у²/3у+4у+5у=у
След-но у=60
Сторона ВС=5у=5×60=300
3.Пусть в треуг-ке АВС х-одна часть, тогда СА=3х, СВ=4х, АВ=5х
ВС=4х=300
х=75
АС=3х=75×3=225
АВ=5х=75×5=375
Sabc=1/2×300×225=33750
r=2S/a+b+c= 2×33750/300+225+375=75
Ответ: 75
Икс равен 2 г) другой ответ