Ответ 30 градусов
т к треугольник равнобедренный углы у основания равны из этого следует что угол В =120 градусам из этого следует что 180-120=60 а потом делим на два
у=к*х+в;
2=к*0+в;
в=2;
1=к*1+в;
к=-в;
к=-2;
у=-2х+2;
А) На прямой а отложим отрезок АВ, равный 5 см.
Проведем две окружности с центрами в точках А и В и радиусом, равным 5 см. Точка пересечения этих окружностей - С - третья вершина треугольника.
б)
1) Если в равнобедренном треугольнике один любой угол равен 60°, то это равносторонний треугольник.
Его строить так же, как и предыдущий, только длина отрезка АВ и радиусы окружностей должны быть 6 см.
2) На прямой а отметим точку В.
Построим точки пересечения дуг произвольного радиуса с центром в точке В и прямой а - это точки О и Р.
С центрами в точках О и Р проведем окружности произвольного одинакового радиуса, большего половины отрезка ОР.
Через точки пересечения этих окружностей проведем прямую b. Она будет перпендикулярна прямой а.
От точки В на прямых а и b отложим одинаковые отрезки ВА и ВС, длиной 6 см.
Треугольник АВС - прямоугольный, равнобедренный с боковой стороной 6 см.
3) На прямой а отложим отрезок АО, равный 6 см.
Проведем две окружности одинакового радиуса, равного АО, с центрами в точках А и О.
С - одна из точек пересечения этих окружностей.
Проведем прямую b через точки пересечения окружностей.
На прямой b отложим отрезок СВ, равный 6 см.
АВС - искомый треугольник.
Доказательство:
ΔАОС - равносторонний, значит ∠АСО = 60°.
b - серединный перпендикуляр к АО, значит и биссектриса треугольника АСО.
Тогда ∠АСВ = 30°.
Нет, утверждение не верно, т.к. ромб - это четырехугольник.
∠4=∠2 как вертикальные ⇒ т.к. ∠4+∠2=162°по условию, то ∠4=∠2=162°:2=81°
∠1+∠2=180° как смежные ⇒ ∠1=180°-81°=99°
∠3=∠1=99° как вертикальные
Т.к.Y║Z, то:
1) ∠4=∠8 как накрест лежащие ⇒∠8=81°
2) ∠3=∠7 как накрест лежащие ⇒∠7=99°
3) ∠4=∠6 как соответственные ⇒∠6=81° (или ∠6=∠8=81°как вертикальные)
4) ∠3=∠5 как соответственные ⇒∠5=99° (или ∠5=∠7=99°как вертикальные).
Ответ: ∠1=∠3=∠5=∠7=99°, ∠2=∠4=∠6=∠8=81°