С точки А проведены две наклонные к плоскости, обозначим АВ иАС, АВ=5х, АС=8х. высота АД-Н.
АВ:АС=5:8, АВ=5х, АС=8х,
по теореме Пифагора
н=корень(5х)^2-7^2,
н=корень(8х)^2-32^2, приравняем оба равенства
5х^2-7^2=8х^2-32^2отсюда находим х=5,тогдаАВ=25, значит
Н=24
Дано: сторона основания правильной треугольной пирамиды равна √3,
двугранный угол при основании равен 60°.
Проекция апофемы A на основание равна (1/3) высоты h правильного треугольника в основании пирамиды.
Находим высоту h = а*cos 30° = √3*(√3/2) = 3/2.
1/3 её равна (3/2)/6 = 3/6 = 1/2.
Находим апофему А: А = ((1/3)h)/cos 60° = (1/2)/(1/2) = 1.<span>
Площадь So основания равна:
So = a</span>²√3/4 = (√3)²√3/4 = 3√3/4.
Площадь Sбок боковой поверхности равна:
Sбок = (1/2)РА = (1/2)*(3*√3)*1 = 3√3/2.
Площадь S полной поверхности правильной треугольной пирамиды равна: S = So+Sбок = 3√3/4 + 3√3/2 = <span>9√3/4.</span>
///////////////////////////////////////////
Угол ОАС равен 90 градусам по свойству касательной.
Значит, угол ОАВ равен 90 - 60 = 30 градусов.
Треуголтник равнобедренный, поэтому угол АОВ= 180-30-30= 120
Ну вот такое должно получится.