треугольник АВС прямоугольный=> угол А=90-35=55
№40:
Треугольник MBC равнобедренный по двум равным сторонам => Углы при основании равны => <BMC=<BCM=78°
<BMA смежен с <BMC => 180°-78°=102°.
MB=AM => Треугольник BMA равнобедренный => MK - медиана (делит противоположную сторону пополам) и одновременно биссектриса (У равнобедренных треугольников медиана является биссектрисой и высотой) => <AMK+<BMK = <BMA. (Биссектриса делит угол пополам).
Следует, что <АМК=102°:2=51°.
R² = 13² - 12² = 169 - 144 = 25, r = 5.
Найдём площадь основания Sосн.=Sполная- S поверхности=48корней из 3. Площадь основания правильного треугольника может быть найдена по формуле Sосн.=(корень из3 )/4 умноженное на а квадрат, где а сторона треугольника. Получаем 48 корней из 3=( а квадрат*корень из 3)/4=8корней из3. Площадь одной боковой грани найдем разделив( 60 кор. из 3) на три (по числу граней). Получим S1=20корней из 3. Площадь боковой грани также равна половине произведения основания на апофему= (h*а)/2=(h *8 корней из 3)/2. Приравниваем два выражения и получаем 20корней из3=h* 4 корня из 3. Отсюда h=5.Высота пирамиды приходит в центр вписанной окружности радиусом r=а/2 корня из 3. Подставим а и получим r=(8 кор. из3)/ (2 кор. из 3) =4. Тогда по теореме Пифагора из треугольника образованного апофемой и радиусом вписанной окружности, находим высоту пирамиды H=корень из(hквадрат-r квадрат)=корень из(25-16)=3.
Угол А равен 180-120=60
угол С=180-90-60=30
напротив угла 30 лежит катет равный половине гипотенузы т.е. АС=10