h^2=(24-18)*18=108(высота это среднее геометрическое отрезков на которые она делит гипотенузу)
AB^2=108+36=144(по т Пифагора)
AB=12
cosA=AB/AC=12/24=1/2=0.5(отношение прилеж катета к гипотенузе)
Треугольник называется равнобедренным, если у него две стороны равны. Эти стороны называются боковыми, а третья сторона – основанием.
Свойства равнобедренного треугольника.
Теорема 4.3.
В равнобедренном треугольнике углы при основании равны.
Доказательство
Теорема 4.4. Свойство медианы равнобедренного треугольника.
В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Рисунок 4.3.1.
Медиана, высота и биссектриса равнобедренного треугольника
Доказательство
Признаки равнобедренного треугольника.
Теорема 4.5.
Если в треугольнике два угла равны, то он равнобедренный.
Доказательство
Теорема 4.6.
Если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.
Доказательство
Теорема 4.7.
Третий признак равенства треугольников. Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
90°/2.5=36° -один угол, 180-36=144° другой
Т,к, сумма внутренних углов треугольника 180, а нам известно два угла треугольника тогда,
180-(М+К)=180-(70+35)=75
<span>ответ:угол N=75 градусов, </span>
Пусть ABCD- треугольник, AB=2, BC=3, Угол BAC = 3* угла BCA
Пусть угол BAC=x, тогда угол BAC=3x<span> </span>и по теореме синусов можно записать
3/sin(3x)=2/sin(x)=2R
Откуда
2sin(3x)=3sin(x)
2*(3sin(x)-4*sin^3(x))=3sin(x)
6-8sin^2(x)=3
8sin^2(x)=3
sin^2(x)=3/8
sin(x)=sqrt(3/8)
2/sin(x)=2R => R=2/2sin(x)=1/sin(x) =1 : sqrt(3)/sqrt(8) =sqrt(8)/sqrt(3)=2*sqrt(2)/sqrt(3)
<span>R=2*sqrt(2)/sqrt(3)</span>