Рисунок скинуть не могу, там получается найдеш HD=3, в прямоугольном треугольнике CHD, потом получается что там все остальная часть квадрат, значит BC=AH=CH=BA,=4, средняя линия трапеции равна сумма оснований делить на 2. 7+4/2=5,5
Столб и его тень - катеты прямоугольного треугольника, подобного треугольнику образованному катетами "шест" и "тень от шеста". При этом коэффициент подобия = 9/1,5 = 6. Отсюда получаем высоту столба = 2*6 = 12 м.
На фото изображена часть данной пирамиды: ОР-высота пирамиды,
АВ- одна из сторон основания, РК=2√2 -апофема, ∠ОРК угол наклона апофемы к основанию, равен 45°.
∠АОВ=360/12=30°. В основании лежат 12 треугольников, Вычислим площадь одного из них.
ΔРОК. ОР=ОК=2
ОК⊥АВ.
ΔАОК: ∠АОК=30/2=15°. tg15°=АК/ОК; АК=0,27·2=0,54; АВ=0,54·2=1,08.
SΔАОВ=0,5·ОК·АВ=0,5·2·1,08=1,08.
Площадь основания состоит из 12-ти таких треугольников.
Площадь основания пирамиды равна S=1,08·12=12,96.
Объем пирамиды равен V=12.96·2/3=8,64
Ответ : 8,64 куб. ед.
1) сторона ТО в ΔКТО равна стороне SO в ΔSOG
2) сторона КО в ΔКТО равна сторне OG в ΔSOG
3) угол TOК равен углу SOG как вертикальный