1) заметим, что 7^(㏒₂₇8) =7^(㏒₃³2³)=7^(㏒₃2)
7^(㏒₂₇8) /2^(㏒₃7) = 7^(㏒₃2) / 2^(㏒₃7) = 1
т.к прологарифмируем по основанию 3 числитель :
㏒₃ 7^(㏒₃2) =㏒₃2*㏒₃7
и знаменатель :
㏒₃2^(㏒₃7) =<span>㏒₃7*㏒₃2
</span> получили
㏒₃2*㏒₃7= ㏒₃7*㏒₃2 ,что и требовалось доказать
7^(㏒₂₇8) /2^(㏒₃7)=1
-----------------------------------------------------------------------------------------------------------
2) (√5)^(㏒₅(√2-1)²) - (√3)^(㏒₃(√2-2)²) =5^(1/2㏒₅(√2-1)²) - 3^(1/2㏒₃(√2-2)²)=
5^(㏒₅(√2-1)) - 3^(㏒₃(√2-2))= √2-1-(√2-2) = √2-1-√2+2 =1
-----------------------------------------------------------------------------------------------------------------
3) ㏒₃81-In е +lg1000= ㏒₃3⁴- 1 +lg10³=4-1+3=6
2*㏒₇16 2*㏒₇2⁴
--------------------------------------------- = --------------------------------------- =
(㏒₃( √10+1) + ㏒₃( √10-1) )*㏒₇2 (㏒₃( √10+1)*( √10-1) )*㏒₇2
2*4㏒₇2 8 8 8
= ------------------------------ = --------- = ------------ = -------- = 4
(㏒₃( √10)²-1² )*㏒₇2 ㏒₃ 9 ㏒₃ 3² 2
(2x + 3)² - 7x = (2x - 1)(2x + 1)
4x² + 12x + 9 - 7x = 4x² - 1
4x² - 4x² + 12x - 7x = -1 - 9
5x = -10
x = -2
Ответ: -2
Скачай приложение photomath решит любой пример если ты наведешь камеру)
Проверим нет ли точек экстремума на этом промежутке:
у`=-11sinx+13
-11sinx+13=0
-11sinx=-13
sinx=13/11 нет решений, следовательно остается проверить значения функции на концах отрезка [0; 3П\2]
у(0)=11cos0+13*0+3=11+3=14
у(3π/2)=11cos3π/2+13*3π/2+3=39π/2+3
14 меньше 39π/2+3, значит 14 есть наименьшее значение