(a²+2a+3) (a-4)=a³+2a²+3a-4a²-8a-12=a³-2a²-5a-12
Там 89 ?
...............................................
Вокруг любого треугольника можно описать окружность, притом только одну. Её центром будет являться точка пересечения серединных перпендикуляров.
* У остроугольного треугольника центр описанной окружности лежит внутри, у тупоугольного — вне треугольника, у прямоугольного — на середине гипотенузы.
Таким образом для постороения описанной окружности надо восстановить перпендикуляры к сторонам из их середин, и из точки их пересечения описать окружность. На черетежах - окружности описанные вокруг остроугольного, тупоугольного и прямоугольного теугольников
58*(42,7-2,7)= 58*20=1160