Честно говоря я уже не помню как правильно доказывать, но я попробую..
9) △ROP=△SO₁P₁ - по стороне RP и SP, и по двум углам P и O (Это, кажется, второй признак равенства треугольников)
10) Этот треугольник я вообще без понятия как доказать
11) △KMP=△K₁P₁N - по стороне KN и K₁N, и по углу K
12) △ABC=ACD - по трем сторонам: AB=CD, BC=AD, AC - общее основание (Третий признак равенства треугольников)
13) △ACD=△D₁C₁B - по двум углам С и С₁, D и D₁, и общей стороной AC и CB (Второй признак)
14) △RPQ=△R₁Q₁S - По двум углам: R=Q₁, R₁=Q и по общей стороне RQ (Второй признак)
15) Тут скорее всего действует второй признак: по двум углам и общей стороной, которая является диагональю в параллелограмме
16) Вот тут я тоже туплю. Я бы сказал что тут может сработать третий признак, т.е. по трем сторонам треугольники равны, но я не уверен в этом
Α ∩ β = a, b ⊂ α, b ∩ β док-ть: b∩ a
Док-во:
a ⊂α, а ⊂ β ( это общая прямая для 2-х плоскостей), ⇒ b∩α
Диагонали прямоугольника равны
АС=BD=8 cм.
СМ ║ BD
BM ║ CD
BDCM - параллелограмм, значит MC=BD=8 cм
MN ║ AC
∠MNB = ∠BCA-внутренние накрест лежащие углы при параллельных прямых MN и АС и секущей NC.
АВ=СD=BM ⇒ AB=BM
ΔBMC =ΔABC по катету и острому углу.
Из равенства треугольников следует равенство сторон
MN=AC=8 cм
ΔMNB = Δ ANB по двум катетам.
NB- общий катет;
АВ=ВМ
Значит MN=NA=8 cм
Р( АCMN)=AC+CM+MN+NA=8+8+8+8=32 cм.
180-(40+30)= 110 градусов угол С (по теореме об сумме углов треугольника)
Сторона АВ наибольшая, т.к. против большего угла (в нашем случае 110 градусов) лежит большая сторона (АВ).
Сначала находим второй катет по теореме Пифагора.
а, b - катеты
с - гипотенуза
с² = a² + b ²
41² = 9² + b²
b² = 1681 -81 = 1600
b = 40 см
P = a + b + c = 9 + 41 + 40 = 90 см - периметр треугольника