Как известно, сумма противоположных углов вписанного четырехугольника равна 180°. Поскольку один из них равен 82°, второй будет равен 180-82=98°.
Ответ: 98°
Помойму также только цифры поменять и всё
По моему так ))))))))))))))))))))))))))
1. Рассмотрим треугольник АА1М. Он прямоугольный (по условию). Найдём АМ по теореме Пифагора:
АМ²=АА1²+А1М²
АМ²=3²+4²
АМ²=25
АМ=5
2. Треугольники АА1М и АА1N равны как прямоугольные по двум катетам (А1М=А1N по условию, АА1 - общая). Тогда АМ=AN=5.
3. Рассмотрим треугольники С1А1В1 и МАN. Они подобны по двум сторонам и общему углу С1А1В1 - А1M:A1C1=A1N:A1B1=1:2. Тогда MN=½C1B1=8:2=4.
P AMN=AM+AN+MN=5+5+4=14
Ответ: 14.
Даны координаты точек С(-2;0;3), D(4;6;1), F(5;7-3), M(-1;1;-1)
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Модуль вектора (его длина) равен квадратному корню из суммы квадратов его координат.
А.DF=√(1²+1²+(-4)²)=√18. MC=√((-1)²+(-1)²+4²)=√18.
Б. CF=√(7²+7²+(-6)²)=√134. DM=√((-5)²+(-5)²+(-2)²)=√54.
B. CD=√(6²+6²+(-2)²)=√76. MF=√(6²+6²+(-2)²)=√76.
Г. CD=√(6²+6²+(-2)²)=√76. FМ=√((-6)²+(-6)²+2²)=√76.
Если указанные равенства относятся к векторам, то верное равенство под буквой В, так как под буквами А и Г равны по модулю, но противоположно направлены.
Ответ: верное равенство В.